

Evaluation of Mercury Loads from Climate Change Projections for McTier Creek, South Carolina

Paul A. Conrads¹, Paul M. Bradley¹, Stephen T. Benedict² and Toby D. Feaster², Heather Goldern³, and Christopher Knightes⁴

 ¹U.S. Geological Survey, 720 Gracern Road, Columbia, SC, USA
 ²U.S. Geological Survey, 405 College Avenue, Clemson, SC, USA
 ³USEPA, Office of Research and Development, Ecological Exposure Research Division, Cincinnati, OH, USA
 ⁴US EPA, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA

9th INTECOL International Wetlands Conference June 5, 2012

Outline

Motivation and approach
Climate projections
Temperature and precipitation projections
Flow and load projections
Summary

Water Science Center

Motivation

- Multiple models for McTier
- Downscaled climate projections readily available
- Conflicting climate projections for the SE
 Scale issues with climate projections
 Is there any useful information to be gained?

Water Science Center

Approach

Global circulation model (GCM)

Statistical downscaling of GCM Output

> Watershed model

Scale issues

GCM Models and Scenarios

Two GCM models ECHO-G (Germany/Korea) CCSM3 (NCAR – Community Climate System Model) One emission scenario A2 (business as usual) Two periods for analysis **1980-2010 2040-2070**

Downscaling and Watershed Model

Statistical downscaling

- Katherine Hayhoe's data
- Daily projections
- Watershed model
 - TOPMODEL (TOPography-based hydrologic MODEL; Bleven and Kirkby, 1979; Wolock, 1993)
 - Monthly simulations
- Load Model
 - TOPLOAD (Benedict and others, 2012)
 - Total Mercury (Hg)
 - Mass balance model
 - Monthly simulations

Climate Projections

Geo-Data Portal

🛈 Dataset URL:	dods://igsarm-cida-three	dds1.er.usgs.gov	8080/thredds/dodsC/dcp	Select			
Selected Dataset: **F	Provisional** - 12km-CO	ONUS Daily Dow	nscaled Climate Projec	tions by Katharine Hayh			
🕡 Select Datatype:	echo_a2_tmax - Downso echo_a2_tmin - Downso echo_a2_pr - Cumulativ echo_b1_tmax - Downso echo_b1_tmin - Downso	x: - Downscaled Maximum Temperature in Degrees Celsius (degreesC) - Downscaled Minimum Temperature in Degrees Celsius (degreesC) - cumulative 24h precipitation in millimetres (mm) ax: - Downscaled Maximum Temperature in Degrees Celsius (degreesC) - Downscaled Minimum Temperature in Degrees Celsius (degreesC)					
	01/01/1000		19/21/2000				

- Upload watershed shapefile
- Select GCM, emission scenario, & parameter

Data .csv format

	А	В
1	# echo_a2_tmax	
2		7.94E+07
3	TIMESTEP	MEAN(degreesC)
4	200 01-01T00:00:00Z	18.008774
	2098-01-02T00:00:00Z	15.456142
6	2098-01-03T00:00:00Z	15.228239
7	2098 91-04T00:00:00Z	20.547836
0	2098-01-05T00:00:00Z	20.494158
9	2098-01-06T00:00:00Z	15.281949
10	2098-01-07T00:00:00Z	13.03721
11	2098-01-08T00:00:00Z	11.479358
12	2098-01-09T00:00:00Z	9.799923
13	2098-01-10T00:00:00Z	11.213561
14	2098-01-11T00:00:00Z	15.969288
15	2098-01-12T00:00:00Z	15.34086
16	2098-01-13T00:00:00Z	15.743985
17	2098-01-14T00:00:00Z	18.670277
18	2098-01-15T00:00:00Z	21.075275
19	2098-01-16T00:00:00Z	12.310971
20	2098-01-17T00:00:00Z	6.44212
21	2098-01-18T00:00:00Z	6.6957593
22	2098-01-19T00:00:00Z	13.900911
23	2098-01-20T00:00:00Z	13.47571
24	2098-01-21T00:00:00Z	4.961596
25	2098-01-22T00:00:007	10 136767

URL: cida.usgs.gov

gov:8080/thredds/dodsC/dcp/conus grid.w meta.ncm

Email notification

Feature Weighted Grid Statistics 1.0.0

FEATURE ATTRIBUTE NAME

TIME_END 2099-12-31T00:00:00.00 REQUIRE FULL COVERAGE

٠

Precipitation projections

CCSM3 projecting more rainfall than ECHO

Water Science Center

Temperature projections 360-day average temperature and trends

ECHO max

ECHO min CCSM3 min

> CCSM3 – wetter and cooler ECHO – drier and warmer

Flow and Load Model TOPMODEL and TOPLOAD

TOPMODEL

Flow Simulations GCM data vs. measured conditions

May 2007 – October 2009

Climate Change Flow Projections

Climate Change Flow Projections

Temperature sensitivity CCSM3

Temperature sensitivity ECHO

A Look at Loads

TOPLOAD

Assignment of Concentration for TOPLOAD Model and Selection of Components to be Plotted												
Selected Water-Quality Constituent for TOPLOAD Mod	TOPLOAD Load Components											
Total mercury (filtered pus particulate total mercury), in nanog	"TOPLOAD (qof)	TOPLOAD (qinf)	TOPLOAD (qb)	TOPLOAD (qret)	TOPLOAD (qimp)	TOPLOAD (qsrip)						
Concentration (Enter value in cells manually):	ng/l	3.50	1.50	3.50	3.50	1.50	11.00					

Concentrations for Total Hg

Measured vs. Predicted Loads

R2 = 0.59 ME = 33 mg/day RMSE = 169 mg/day Percent error = 9%

May 2007 – October 2009

Projected Total Hg Load

-- ECHO (1980-2010) -- ECHO (2040-2070)

1980 - 2010

2040 - 2070

Cumulative Total Hg Load

Flow Components Percent of Total Load

CCSM3 Monthly Durations -Total Load

CCSM3 Monthly Durations – Return Flow

CCSM3 Monthly Durations: Subsurface

ECHO – Monthly Durations: Total Load

ECHO – Monthly Durations: Return Flow

ECHO Monthly Durations: Subsurface

Summary

GCM conflicting precipitation projections Consensus between GCMs on some seasonal Total Hg loads Decreasing Winter and Spring load GCM differ on Summer and Fall loads CCSM3 - increase in loads ECHO – decrease in loads

Summary

Multiple models offers approach to constraining potential climate change projections effects
 From this limited analysis, scale of McTier vs. GCM did not appear to be an issue

Water Science Center

Water Science Center

